Standard pipeline
In [ ]:
Copied!
import datetime
import logging
import time
from pathlib import Path
import datetime
import logging
import time
from pathlib import Path
In [ ]:
Copied!
import numpy as np
from pydantic import TypeAdapter
import numpy as np
from pydantic import TypeAdapter
In [ ]:
Copied!
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.pipeline_options import (
ThreadedPdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.threaded_standard_pdf_pipeline import ThreadedStandardPdfPipeline
from docling.utils.profiling import ProfilingItem
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.pipeline_options import (
ThreadedPdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.threaded_standard_pdf_pipeline import ThreadedStandardPdfPipeline
from docling.utils.profiling import ProfilingItem
In [ ]:
Copied!
_log = logging.getLogger(__name__)
_log = logging.getLogger(__name__)
In [ ]:
Copied!
def main():
logging.getLogger("docling").setLevel(logging.WARNING)
_log.setLevel(logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
# input_doc_path = data_folder / "pdf" / "2305.03393v1.pdf" # 14 pages
input_doc_path = data_folder / "pdf" / "redp5110_sampled.pdf" # 18 pages
pipeline_options = ThreadedPdfPipelineOptions(
accelerator_options=AcceleratorOptions(
device=AcceleratorDevice.CUDA,
),
ocr_batch_size=4,
layout_batch_size=64,
table_batch_size=4,
)
pipeline_options.do_ocr = False
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=ThreadedStandardPdfPipeline,
pipeline_options=pipeline_options,
)
}
)
start_time = time.time()
doc_converter.initialize_pipeline(InputFormat.PDF)
init_runtime = time.time() - start_time
_log.info(f"Pipeline initialized in {init_runtime:.2f} seconds.")
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
pipeline_runtime = time.time() - start_time
assert conv_result.status == ConversionStatus.SUCCESS
num_pages = len(conv_result.pages)
_log.info(f"Document converted in {pipeline_runtime:.2f} seconds.")
_log.info(f" {num_pages / pipeline_runtime:.2f} pages/second.")
def main():
logging.getLogger("docling").setLevel(logging.WARNING)
_log.setLevel(logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
# input_doc_path = data_folder / "pdf" / "2305.03393v1.pdf" # 14 pages
input_doc_path = data_folder / "pdf" / "redp5110_sampled.pdf" # 18 pages
pipeline_options = ThreadedPdfPipelineOptions(
accelerator_options=AcceleratorOptions(
device=AcceleratorDevice.CUDA,
),
ocr_batch_size=4,
layout_batch_size=64,
table_batch_size=4,
)
pipeline_options.do_ocr = False
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=ThreadedStandardPdfPipeline,
pipeline_options=pipeline_options,
)
}
)
start_time = time.time()
doc_converter.initialize_pipeline(InputFormat.PDF)
init_runtime = time.time() - start_time
_log.info(f"Pipeline initialized in {init_runtime:.2f} seconds.")
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
pipeline_runtime = time.time() - start_time
assert conv_result.status == ConversionStatus.SUCCESS
num_pages = len(conv_result.pages)
_log.info(f"Document converted in {pipeline_runtime:.2f} seconds.")
_log.info(f" {num_pages / pipeline_runtime:.2f} pages/second.")
In [ ]:
Copied!
if __name__ == "__main__":
main()
if __name__ == "__main__":
main()