Skip to content

Vision models

The VlmPipeline in Docling allows to convert documents end-to-end using a vision-language model.

Docling supports vision-language models which output:

  • DocTags (e.g. SmolDocling), the preferred choice
  • Markdown
  • HTML

For running Docling using local models with the VlmPipeline:

docling --pipeline vlm FILE

See also the example minimal_vlm_pipeline.py.

from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline

converter = DocumentConverter(
    format_options={
        InputFormat.PDF: PdfFormatOption(
            pipeline_cls=VlmPipeline,
        ),
    }
)

doc = converter.convert(source="FILE").document

Available local models

By default, the vision-language models are running locally. Docling allows to choose between the Hugging Face Transformers framweork and the MLX (for Apple devices with MPS acceleration) one.

The following table reports the models currently available out-of-the-box.

Model instance Model Framework Device Num pages Inference time (sec)
vlm_model_specs.SMOLDOCLING_TRANSFORMERS ds4sd/SmolDocling-256M-preview Transformers/AutoModelForVision2Seq MPS 1 102.212
vlm_model_specs.SMOLDOCLING_MLX ds4sd/SmolDocling-256M-preview-mlx-bf16 MLX MPS 1 6.15453
vlm_model_specs.QWEN25_VL_3B_MLX mlx-community/Qwen2.5-VL-3B-Instruct-bf16 MLX MPS 1 23.4951
vlm_model_specs.PIXTRAL_12B_MLX mlx-community/pixtral-12b-bf16 MLX MPS 1 308.856
vlm_model_specs.GEMMA3_12B_MLX mlx-community/gemma-3-12b-it-bf16 MLX MPS 1 378.486
vlm_model_specs.GRANITE_VISION_TRANSFORMERS ibm-granite/granite-vision-3.2-2b Transformers/AutoModelForVision2Seq MPS 1 104.75
vlm_model_specs.PHI4_TRANSFORMERS microsoft/Phi-4-multimodal-instruct Transformers/AutoModelForCasualLM CPU 1 1175.67
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS mistral-community/pixtral-12b Transformers/AutoModelForVision2Seq CPU 1 1828.21

Inference time is computed on a Macbook M3 Max using the example page tests/data/pdf/2305.03393v1-pg9.pdf. The comparision is done with the example compare_vlm_models.py.

For choosing the model, the code snippet above can be extended as follow

from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling.datamodel.pipeline_options import (
    VlmPipelineOptions,
)
from docling.datamodel import vlm_model_specs

pipeline_options = VlmPipelineOptions(
    vlm_options=vlm_model_specs.SMOLDOCLING_MLX,  # <-- change the model here
)

converter = DocumentConverter(
    format_options={
        InputFormat.PDF: PdfFormatOption(
            pipeline_cls=VlmPipeline,
            pipeline_options=pipeline_options,
        ),
    }
)

doc = converter.convert(source="FILE").document

Other models

Other models can be configured by directly providing the Hugging Face repo_id, the prompt and a few more options.

For example:

from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions, InferenceFramework, TransformersModelType

pipeline_options = VlmPipelineOptions(
    vlm_options=InlineVlmOptions(
        repo_id="ibm-granite/granite-vision-3.2-2b",
        prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
        response_format=ResponseFormat.MARKDOWN,
        inference_framework=InferenceFramework.TRANSFORMERS,
        transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
        supported_devices=[
            AcceleratorDevice.CPU,
            AcceleratorDevice.CUDA,
            AcceleratorDevice.MPS,
        ],
        scale=2.0,
        temperature=0.0,
    )
)

Remote models

Additionally to local models, the VlmPipeline allows to offload the inference to a remote service hosting the models. Many remote inference services are provided, the key requirement is to offer an OpenAI-compatible API. This includes vLLM, Ollama, etc.

More examples on how to connect with the remote inference services can be found in the following examples: