Custom conversion
Customize PDF conversion by toggling OCR/backends and pipeline options.
What this example does
- Shows several alternative configurations for the Docling PDF pipeline.
- Lets you try OCR engines (EasyOCR, Tesseract, system OCR) or no OCR.
- Converts a single sample PDF and exports results to
scratch/.
Prerequisites
- Install Docling and its optional OCR backends per the docs.
- Ensure you can import
doclingfrom your Python environment.
How to run
- From the repository root, run:
python docs/examples/custom_convert.py. - Outputs are written under
scratch/next to where you run the script.
Choosing a configuration
- Only one configuration block should be active at a time.
- Uncomment exactly one of the sections below to experiment.
- The file ships with "Docling Parse with EasyOCR" enabled as a sensible default.
- If you uncomment a backend or OCR option that is not imported above, also
import its class, e.g.:
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackendfrom docling.datamodel.pipeline_options import TesseractOcrOptions, TesseractCliOcrOptions, OcrMacOptions
Input document
- Defaults to a single PDF from
tests/data/pdf/in the repo. - If you don't have the test data, update
input_doc_pathto a local PDF.
Notes
- EasyOCR language: adjust
pipeline_options.ocr_options.lang(e.g., ["en"], ["es"], ["en", "de"]). - Accelerators: tune
AcceleratorOptionsto select CPU/GPU or threads. - Exports: JSON, plain text, Markdown, and doctags are saved in
scratch/.
In [ ]:
Copied!
import json
import logging
import time
from pathlib import Path
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
_log = logging.getLogger(__name__)
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
###########################################################################
# The sections below demo combinations of PdfPipelineOptions and backends.
# Tip: Uncomment exactly one section at a time to compare outputs.
# PyPdfium without EasyOCR
# --------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = False
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# PyPdfium with EasyOCR
# -----------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# Docling Parse without EasyOCR
# -------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with EasyOCR (default)
# -------------------------------
# Enables OCR and table structure with EasyOCR, using automatic device
# selection via AcceleratorOptions. Adjust languages as needed.
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
pipeline_options.ocr_options.lang = ["es"]
pipeline_options.accelerator_options = AcceleratorOptions(
num_threads=4, device=AcceleratorDevice.AUTO
)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
# Docling Parse with EasyOCR (CPU only)
# -------------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.ocr_options.use_gpu = False # <-- set this.
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract
# ----------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract CLI
# --------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractCliOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with ocrmac (macOS only)
# --------------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = OcrMacOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
###########################################################################
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
end_time = time.time() - start_time
_log.info(f"Document converted in {end_time:.2f} seconds.")
## Export results
output_dir = Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_result.input.file.stem
# Export Docling document JSON format:
with (output_dir / f"{doc_filename}.json").open("w", encoding="utf-8") as fp:
fp.write(json.dumps(conv_result.document.export_to_dict()))
# Export Text format (plain text via Markdown export):
with (output_dir / f"{doc_filename}.txt").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_markdown(strict_text=True))
# Export Markdown format:
with (output_dir / f"{doc_filename}.md").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_markdown())
# Export Document Tags format:
with (output_dir / f"{doc_filename}.doctags").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_doctags())
if __name__ == "__main__":
main()
import json
import logging
import time
from pathlib import Path
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
_log = logging.getLogger(__name__)
def main():
logging.basicConfig(level=logging.INFO)
data_folder = Path(__file__).parent / "../../tests/data"
input_doc_path = data_folder / "pdf/2206.01062.pdf"
###########################################################################
# The sections below demo combinations of PdfPipelineOptions and backends.
# Tip: Uncomment exactly one section at a time to compare outputs.
# PyPdfium without EasyOCR
# --------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = False
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# PyPdfium with EasyOCR
# -----------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(
# pipeline_options=pipeline_options, backend=PyPdfiumDocumentBackend
# )
# }
# )
# Docling Parse without EasyOCR
# -------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = False
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with EasyOCR (default)
# -------------------------------
# Enables OCR and table structure with EasyOCR, using automatic device
# selection via AcceleratorOptions. Adjust languages as needed.
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
pipeline_options.ocr_options.lang = ["es"]
pipeline_options.accelerator_options = AcceleratorOptions(
num_threads=4, device=AcceleratorDevice.AUTO
)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
# Docling Parse with EasyOCR (CPU only)
# -------------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.ocr_options.use_gpu = False # <-- set this.
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract
# ----------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with Tesseract CLI
# --------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = TesseractCliOcrOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
# Docling Parse with ocrmac (macOS only)
# --------------------------------------
# pipeline_options = PdfPipelineOptions()
# pipeline_options.do_ocr = True
# pipeline_options.do_table_structure = True
# pipeline_options.table_structure_options.do_cell_matching = True
# pipeline_options.ocr_options = OcrMacOptions()
# doc_converter = DocumentConverter(
# format_options={
# InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
# }
# )
###########################################################################
start_time = time.time()
conv_result = doc_converter.convert(input_doc_path)
end_time = time.time() - start_time
_log.info(f"Document converted in {end_time:.2f} seconds.")
## Export results
output_dir = Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_result.input.file.stem
# Export Docling document JSON format:
with (output_dir / f"{doc_filename}.json").open("w", encoding="utf-8") as fp:
fp.write(json.dumps(conv_result.document.export_to_dict()))
# Export Text format (plain text via Markdown export):
with (output_dir / f"{doc_filename}.txt").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_markdown(strict_text=True))
# Export Markdown format:
with (output_dir / f"{doc_filename}.md").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_markdown())
# Export Document Tags format:
with (output_dir / f"{doc_filename}.doctags").open("w", encoding="utf-8") as fp:
fp.write(conv_result.document.export_to_doctags())
if __name__ == "__main__":
main()