Compare VLM models¶
This example runs the VLM pipeline with different vision-language models. Their runtime as well output quality is compared.
In [ ]:
Copied!
import json
import sys
import time
from pathlib import Path
import json
import sys
import time
from pathlib import Path
In [ ]:
Copied!
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
from tabulate import tabulate
from docling_core.types.doc import DocItemLabel, ImageRefMode
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
from tabulate import tabulate
In [ ]:
Copied!
from docling.datamodel import vlm_model_specs
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.datamodel.pipeline_options_vlm_model import InferenceFramework
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling.datamodel import vlm_model_specs
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.datamodel.pipeline_options_vlm_model import InferenceFramework
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
In [ ]:
Copied!
def convert(sources: list[Path], converter: DocumentConverter):
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
for source in sources:
print("================================================")
print("Processing...")
print(f"Source: {source}")
print("---")
print(f"Model: {model_id}")
print(f"Framework: {framework}")
print("================================================")
print("")
res = converter.convert(source)
print("")
fname = f"{res.input.file.stem}-{model_id}-{framework}"
inference_time = 0.0
for i, page in enumerate(res.pages):
inference_time += page.predictions.vlm_response.generation_time
print("")
print(
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
)
print(page.predictions.vlm_response.text)
print(" ---------- ")
print("===== Final output of the converted document =======")
with (out_path / f"{fname}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
res.document.save_as_json(
out_path / f"{fname}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.json")
res.document.save_as_markdown(
out_path / f"{fname}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.md")
res.document.save_as_html(
out_path / f"{fname}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
split_page_view=True,
)
print(f" => produced {out_path / fname}.html")
pg_num = res.document.num_pages()
print("")
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("====================================================")
return [
source,
model_id,
str(framework),
pg_num,
inference_time,
]
def convert(sources: list[Path], converter: DocumentConverter):
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
for source in sources:
print("================================================")
print("Processing...")
print(f"Source: {source}")
print("---")
print(f"Model: {model_id}")
print(f"Framework: {framework}")
print("================================================")
print("")
res = converter.convert(source)
print("")
fname = f"{res.input.file.stem}-{model_id}-{framework}"
inference_time = 0.0
for i, page in enumerate(res.pages):
inference_time += page.predictions.vlm_response.generation_time
print("")
print(
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format} in {page.predictions.vlm_response.generation_time} [sec]:"
)
print(page.predictions.vlm_response.text)
print(" ---------- ")
print("===== Final output of the converted document =======")
with (out_path / f"{fname}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict()))
res.document.save_as_json(
out_path / f"{fname}.json",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.json")
res.document.save_as_markdown(
out_path / f"{fname}.md",
image_mode=ImageRefMode.PLACEHOLDER,
)
print(f" => produced {out_path / fname}.md")
res.document.save_as_html(
out_path / f"{fname}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
split_page_view=True,
)
print(f" => produced {out_path / fname}.html")
pg_num = res.document.num_pages()
print("")
print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
)
print("====================================================")
return [
source,
model_id,
str(framework),
pg_num,
inference_time,
]
In [ ]:
Copied!
if __name__ == "__main__":
sources = [
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
## Use VlmPipeline
pipeline_options = VlmPipelineOptions()
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
vlm_models = [
## DocTags / SmolDocling models
vlm_model_specs.SMOLDOCLING_MLX,
vlm_model_specs.SMOLDOCLING_TRANSFORMERS,
## Markdown models (using MLX framework)
vlm_model_specs.QWEN25_VL_3B_MLX,
vlm_model_specs.PIXTRAL_12B_MLX,
vlm_model_specs.GEMMA3_12B_MLX,
## Markdown models (using Transformers framework)
vlm_model_specs.GRANITE_VISION_TRANSFORMERS,
vlm_model_specs.PHI4_TRANSFORMERS,
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS,
]
# Remove MLX models if not on Mac
if sys.platform != "darwin":
vlm_models = [
m for m in vlm_models if m.inference_framework != InferenceFramework.MLX
]
rows = []
for vlm_options in vlm_models:
pipeline_options.vlm_options = vlm_options
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
},
)
row = convert(sources=sources, converter=converter)
rows.append(row)
print(
tabulate(
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
)
)
print("see if memory gets released ...")
time.sleep(10)
if __name__ == "__main__":
sources = [
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
out_path = Path("scratch")
out_path.mkdir(parents=True, exist_ok=True)
## Use VlmPipeline
pipeline_options = VlmPipelineOptions()
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
vlm_models = [
## DocTags / SmolDocling models
vlm_model_specs.SMOLDOCLING_MLX,
vlm_model_specs.SMOLDOCLING_TRANSFORMERS,
## Markdown models (using MLX framework)
vlm_model_specs.QWEN25_VL_3B_MLX,
vlm_model_specs.PIXTRAL_12B_MLX,
vlm_model_specs.GEMMA3_12B_MLX,
## Markdown models (using Transformers framework)
vlm_model_specs.GRANITE_VISION_TRANSFORMERS,
vlm_model_specs.PHI4_TRANSFORMERS,
vlm_model_specs.PIXTRAL_12B_TRANSFORMERS,
]
# Remove MLX models if not on Mac
if sys.platform != "darwin":
vlm_models = [
m for m in vlm_models if m.inference_framework != InferenceFramework.MLX
]
rows = []
for vlm_options in vlm_models:
pipeline_options.vlm_options = vlm_options
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
InputFormat.IMAGE: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
},
)
row = convert(sources=sources, converter=converter)
rows.append(row)
print(
tabulate(
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
)
)
print("see if memory gets released ...")
time.sleep(10)