Skip to content

convert Command

Overview

The convert command transforms documents into knowledge graphs using configurable extraction pipelines.

Key Features:

  • Multiple backend support (LLM/VLM)
  • Flexible processing modes
  • Configurable chunking
  • Multiple export formats
  • Batch processing support

Basic Usage

uv run docling-graph convert SOURCE --template TEMPLATE [OPTIONS]

Required Arguments

Argument Description
SOURCE Path to document (PDF, JPG, PNG, TXT, MD), URL, or DoclingDocument JSON
--template, -t Dotted path to Pydantic template

Examples

# PDF document
uv run docling-graph convert invoice.pdf \
    --template "templates.BillingDocument"

# Text file
uv run docling-graph convert notes.txt \
    --template "templates.Report" \
    --backend llm

# URL
uv run docling-graph convert https://example.com/doc.pdf \
    --template "templates.BillingDocument"

# Markdown file
uv run docling-graph convert README.md \
    --template "templates.Documentation" \
    --backend llm

Core Options

Debug Mode

--debug

Enable debug mode to save all intermediate extraction artifacts for debugging and analysis.

When to use:

  • Debugging extraction issues
  • Analyzing extraction quality
  • Performance profiling
  • Development and testing

Output: All debug artifacts saved to outputs/{document}_{timestamp}/debug/

Example:

# Enable debug mode
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --debug

# Debug artifacts will be in:
# outputs/document_pdf_20260206_094500/debug/

See Debug Mode Documentation for details on debug artifacts.


Backend Selection

--backend {llm|vlm}

LLM (Language Model):

  • Best for text-heavy documents
  • Supports chunking and consolidation
  • Works with local and remote providers

VLM (Vision-Language Model):

  • Best for forms and structured layouts
  • Processes images directly
  • Local inference only

Example:

# Use LLM backend
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --backend llm

# Use VLM backend
uv run docling-graph convert form.jpg \
    --template "templates.IDCard" \
    --backend vlm


Inference Mode

--inference {local|remote}

Local:

  • Run models on your machine
  • Requires GPU for best performance
  • No API costs

Remote:

  • Use cloud API providers
  • Requires API key
  • Pay per request

Example:

# Local inference
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --inference local

# Remote inference
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --inference remote


Processing Mode

--processing-mode {one-to-one|many-to-one}

many-to-one (recommended):

  • Merge all pages into single graph
  • Better for multi-page documents
  • Enables consolidation

one-to-one:

  • Create separate graph per page
  • Better for independent pages
  • Faster processing

Example:

# Merge all pages
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --processing-mode many-to-one

# Process pages separately
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --processing-mode one-to-one


Model Configuration

Provider Override

--provider PROVIDER

Available providers:

  • Local: vllm, ollama, lmstudio
  • Remote: mistral, openai, gemini, watsonx

Model Override

--model MODEL

Example:

# Use specific model
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --provider mistral \
    --model mistral-large-latest

LLM connection overrides

Use --llm-base-url to point to a custom endpoint (e.g. on-prem OpenAI-compatible server). API keys are set via environment variables or config.yaml (llm_overrides.connection), not CLI. See LLM Model Configuration for the full list of overrides and on-prem setup.

For LM Studio (--provider lmstudio): override the base URL with LM_STUDIO_API_BASE or --llm-base-url; when the server requires auth, set LM_STUDIO_API_KEY or llm_overrides.connection.api_key in config.

For the on-prem flow (openai-compatible), use fixed env vars:

export CUSTOM_LLM_BASE_URL="https://your-llm.example.com/v1"
export CUSTOM_LLM_API_KEY="your-api-key"

Extraction Options

Chunking

--use-chunking / --no-use-chunking

Enable chunking for:

  • Large documents (>5 pages)
  • Documents exceeding context limits
  • Better extraction accuracy

Disable chunking for:

  • Small documents
  • When full context is needed
  • Faster processing

Example:

# Enable chunking (default)
uv run docling-graph convert large_doc.pdf \
    --template "templates.ScholarlyRheologyPaper" \
    --use-chunking

# Disable chunking
uv run docling-graph convert small_doc.pdf \
    --template "templates.BillingDocument" \
    --no-use-chunking


Staged Extraction Tuning

These flags apply when --extraction-contract staged is used in many-to-one mode.

--staged-tuning {standard|advanced}
--staged-retries INT
--parallel-workers INT
--staged-nodes-fill-cap INT
--staged-id-shard-size INT
  • --staged-tuning: preset defaults (standard or advanced).
  • --staged-retries: retries per staged pass for invalid JSON responses.
  • --parallel-workers: parallel workers for extraction (staged fill pass and delta batch calls).
  • --staged-nodes-fill-cap: max node instances per fill-pass call.
  • --staged-id-shard-size: max catalog paths per ID-pass call (0 disables sharding).

ID pass always runs sequentially across shards for stable skeleton assembly.

Delta Extraction Tuning

These flags apply when --extraction-contract delta is used in many-to-one mode (chunking must be enabled). To configure delta resolvers and quality gates interactively, run docling-graph init and choose delta as the extraction contract; the wizard will prompt for resolver enable/mode and optional quality tweaks (see init Command).

--llm-batch-token-size INT
--parallel-workers INT
--delta-normalizer-validate-paths / --no-delta-normalizer-validate-paths
--delta-normalizer-canonicalize-ids / --no-delta-normalizer-canonicalize-ids
--delta-normalizer-strip-nested-properties / --no-delta-normalizer-strip-nested-properties
--delta-resolvers-enabled / --no-delta-resolvers-enabled
--delta-resolvers-mode {off|fuzzy|semantic|chain}
--delta-resolver-fuzzy-threshold FLOAT
--delta-resolver-semantic-threshold FLOAT
  • --llm-batch-token-size: max input tokens per delta batch (default: 1024).
  • --parallel-workers: parallel workers for delta batch LLM calls.
  • Delta normalizer flags control path validation, ID canonicalization, and nested property stripping.
  • Resolvers optionally merge near-duplicate entities after merge (fuzzy, semantic, or chain).

Quality gate options (e.g. delta_quality_max_parent_lookup_miss, delta_quality_require_relationships) are not CLI flags; set them in config.yaml under defaults or use the init wizard when selecting delta.

See Delta Extraction for full options and quality gate settings.

Gleaning (direct and delta)

Optional second-pass extraction ("what did you miss?") to improve recall. Applies to direct and delta contracts only (not staged). Enabled by default.

--gleaning-enabled / --no-gleaning-enabled
--gleaning-max-passes INT
  • --gleaning-enabled: run one extra extraction pass and merge additional entities/relations (default: enabled).
  • --gleaning-max-passes: max number of gleaning passes when enabled (default: 1).

Example (delta with gleaning):

uv run docling-graph convert document.pdf \
    --template "templates.ScholarlyRheologyPaper" \
    --processing-mode many-to-one \
    --extraction-contract delta \
    --gleaning-enabled \
    --gleaning-max-passes 1 \
    --parallel-workers 2

Example (basic delta):

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --processing-mode many-to-one \
    --extraction-contract delta \
    --use-chunking \
    --llm-batch-token-size 2048 \
    --parallel-workers 2

Example (delta with resolvers):

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --processing-mode many-to-one \
    --extraction-contract delta \
    --use-chunking \
    --delta-resolvers-enabled \
    --delta-resolvers-mode fuzzy \
    --delta-resolver-fuzzy-threshold 0.9 \
    --parallel-workers 2

Structured Output Mode

Structured output is enabled by default for LLM extraction and enforces schema through LiteLLM response_format=json_schema.

--schema-enforced-llm / --no-schema-enforced-llm
--structured-sparse-check / --no-structured-sparse-check
  • Use --schema-enforced-llm (default) for strict schema-constrained output.
  • Use --no-schema-enforced-llm to fall back to legacy prompt-embedded schema mode.
  • Use --no-structured-sparse-check to disable the sparse structured-result quality guard.
  • When schema mode fails at runtime (unsupported backend/model or malformed request), Docling Graph logs the error and automatically retries once using legacy prompt-schema mode.
  • Even when schema mode succeeds technically, Docling Graph can trigger the same fallback once if the structured payload is detected as obviously sparse for the target schema.

Example:

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --processing-mode many-to-one \
    --extraction-contract staged \
    --parallel-workers 4 \
    --staged-nodes-fill-cap 12 \
    --staged-id-shard-size 2

Docling Configuration

Pipeline Selection

--docling-pipeline {ocr|vision}

OCR Pipeline:

  • Traditional OCR approach
  • Most accurate for standard documents
  • Faster processing

Vision Pipeline:

  • Uses Granite-Docling VLM
  • Better for complex layouts
  • Handles tables and figures better

Example:

# Use OCR pipeline (default)
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --docling-pipeline ocr

# Use vision pipeline
uv run docling-graph convert complex_doc.pdf \
    --template "templates.ScholarlyRheologyPaper" \
    --docling-pipeline vision


Export Options

Export Format

--export-format {csv|cypher}

CSV:

  • For Neo4j import
  • Separate nodes.csv and edges.csv
  • Easy to analyze

Cypher:

  • Direct Neo4j execution
  • Single .cypher file
  • Ready to import

Example:

# Export as CSV
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --export-format csv

# Export as Cypher
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --export-format cypher


Docling Exports

--export-docling-json / --no-docling-json
--export-markdown / --no-markdown
--export-per-page / --no-per-page

Example:

# Export all Docling outputs
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --export-docling-json \
    --export-markdown \
    --export-per-page

# Minimal exports
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --no-docling-json \
    --no-markdown \
    --no-per-page


Graph Options

Reverse Edges

--reverse-edges

Creates bidirectional relationships in the graph.

Example:

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --reverse-edges


Output Options

Output Directory

--output-dir PATH

Default: outputs/

Example:

# Custom output directory
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --output-dir "results/invoice_001"

# Organize by date
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --output-dir "outputs/$(date +%Y-%m-%d)"


Complete Examples

📍 Simple Invoice (VLM)

uv run docling-graph convert invoice.jpg \
    --template "templates.BillingDocument" \
    --backend vlm \
    --processing-mode one-to-one \
    --output-dir "outputs/invoice"

📍 Rheology Research (Remote LLM)

export MISTRAL_API_KEY="your-key"

uv run docling-graph convert research.pdf \
    --template "templates.ScholarlyRheologyPaper" \
    --backend llm \
    --inference remote \
    --provider mistral \
    --model mistral-large-latest \
    --processing-mode many-to-one \
    --use-chunking \
    --output-dir "outputs/research"

📍 Debug Mode Enabled

# Enable debug mode for troubleshooting
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --backend llm \
    --debug \
    --output-dir "outputs/debug_run"

# Debug artifacts will be saved to:
# outputs/debug_run/document_pdf_20260206_094500/debug/

📍 Local Processing (Ollama)

# Start Ollama server first
ollama serve

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --backend llm \
    --inference local \
    --provider ollama \
    --model llama3:8b \
    --processing-mode many-to-one \
    --use-chunking \
    --output-dir "outputs/local"

📍 Cypher Export for Neo4j

uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --backend llm \
    --inference remote \
    --export-format cypher \
    --output-dir "outputs/neo4j"

# Import to Neo4j
cat outputs/neo4j/graph.cypher | cypher-shell

📍 Minimal Processing

uv run docling-graph convert small_doc.pdf \
    --template "templates.BillingDocument" \
    --backend llm \
    --inference local \
    --no-use-chunking \
    --no-docling-json \
    --no-markdown \
    --output-dir "outputs/minimal"

Batch Processing

Process Multiple Files

# Bash loop
for pdf in documents/*.pdf; do
    uv run docling-graph convert "$pdf" \
        --template "templates.BillingDocument" \
        --output-dir "outputs/$(basename $pdf .pdf)"
done

Parallel Processing

# Using GNU parallel
ls documents/*.pdf | parallel -j 4 \
    uv run docling-graph convert {} \
        --template "templates.BillingDocument" \
        --output-dir "outputs/{/.}"

Batch Script

#!/bin/bash
# batch_convert.sh

TEMPLATE="templates.BillingDocument"
INPUT_DIR="documents"
OUTPUT_BASE="outputs"

for file in "$INPUT_DIR"/*.pdf; do
    filename=$(basename "$file" .pdf)
    echo "Processing: $filename"

    uv run docling-graph convert "$file" \
        --template "$TEMPLATE" \
        --output-dir "$OUTPUT_BASE/$filename" \
        --backend llm \
        --inference remote

    echo "Completed: $filename"
done

Configuration Priority

Options are resolved in this order (highest to lowest):

  1. Command-line arguments
  2. config.yaml (from init)
  3. Built-in defaults

Example

# config.yaml
defaults:
  backend: llm
  inference: local
  processing_mode: many-to-one
# This uses remote inference (CLI overrides config)
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --inference remote

Output Structure

outputs/
├── metadata.json                # Pipeline metadata
├── docling/                     # Docling conversion output
│   ├── document.json            # Docling format
│   └── document.md              # Markdown export
└── docling_graph/               # Graph outputs
    ├── graph.json               # Complete graph
    ├── nodes.csv                # Node data
    ├── edges.csv                # Edge data
    ├── graph.html               # Interactive visualization
    └── report.md                # Summary report
    └── ...

Error Handling

Configuration Errors

[red]Configuration Error:[/red] Invalid backend type: 'invalid'

Solution: Use llm or vlm

Extraction Errors

[red]Extraction Error:[/red] Template not found: 'templates.Missing'

Solution: Check template path and ensure it's importable

API Errors

[red]Pipeline Error:[/red] API key not found for provider: mistral

Solution:

export MISTRAL_API_KEY="your-key"


Troubleshooting

🐛 Template Not Found

Error:

ModuleNotFoundError: No module named 'templates'

Solution:

# Ensure template is in Python path
export PYTHONPATH="${PYTHONPATH}:$(pwd)"

# Or use absolute path
uv run docling-graph convert document.pdf \
    --template "my_project.templates.BillingDocument"

🐛 Out of Memory

Error:

CUDA out of memory

Solution:

# Enable chunking
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --use-chunking

# Or use smaller model
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --model "ibm-granite/granite-4.0-1b"

🐛 Slow Processing

Solution:

# Disable chunking for small documents to speed up
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --no-use-chunking


Best Practices

👍 Use Configuration Files

# ✅ Good - Reusable configuration
uv run docling-graph init
uv run docling-graph convert document.pdf -t "templates.BillingDocument"

# ❌ Avoid - Repeating options
uv run docling-graph convert document.pdf \
    --template "templates.BillingDocument" \
    --backend llm --inference remote --provider mistral

👍 Organize Outputs

# ✅ Good - Organized by document
uv run docling-graph convert invoice_001.pdf \
    --template "templates.BillingDocument" \
    --output-dir "outputs/invoice_001"

# ❌ Avoid - Overwriting outputs
uv run docling-graph convert invoice_001.pdf \
    --template "templates.BillingDocument"

👍 Use Appropriate Backend

# ✅ Good - VLM for forms
uv run docling-graph convert id_card.jpg \
    --template "templates.IDCard" \
    --backend vlm

# ✅ Good - LLM for documents
uv run docling-graph convert research.pdf \
    --template "templates.ScholarlyRheologyPaper" \
    --backend llm

Next Steps

  1. inspect Command → - Visualize results
  2. CLI Recipes → - Common patterns
  3. Examples → - Real-world examples