Skip to content

Installation

Overview

Docling Graph is available on PyPI. Install with pip for the recommended experience, or clone the repository and use uv for development.

What You'll Install

  1. Core Package: Docling Graph with VLM support
  2. Optional Features: LLM providers (local and/or remote) via LiteLLM (included by default)
  3. GPU Support (optional): PyTorch with CUDA for local inference
  4. API Keys (optional): For remote LLM providers

Quick Start

pip install docling-graph

This installs:

  • ✅ Docling (document conversion)
  • ✅ VLM backend (NuExtract models)
  • ✅ Core graph functionality
  • ✅ LiteLLM (for LLM providers; no extra install needed)

Run the CLI with:

docling-graph --version
docling-graph --help

Install from Source (Development)

To contribute or use the latest development version:

git clone https://github.com/docling-project/docling-graph
cd docling-graph
uv sync

Use uv run docling-graph when running the CLI from a source checkout.

System Requirements

Minimum Requirements

  • Python: 3.10, 3.11, or 3.12
  • RAM: 8 GB minimum
  • Disk: 5 GB free space
  • OS: Linux, macOS, or Windows (with WSL recommended)
  • GPU: NVIDIA GPU with 8+ GB VRAM
  • CUDA: 11.8 or 12.1
  • RAM: 16 GB or more
  • Disk: 20 GB free space (for models)

For VLM Only

  • GPU: NVIDIA GPU with 4+ GB VRAM (for NuExtract-2B)
  • GPU: NVIDIA GPU with 8+ GB VRAM (for NuExtract-8B)

For Remote API Only

  • No GPU required
  • Internet connection required
  • API keys required

Verification

Check Installation

# Check version (use docling-graph if installed via pip; uv run docling-graph if from source)
docling-graph --version

# Test CLI
docling-graph --help

Expected output:

Docling Graph v1.2.0
Usage: docling-graph [OPTIONS] COMMAND [ARGS]...

Test Import

python -c "import docling_graph; print(docling_graph.__version__)"

Expected output:

v1.2.0

Next Steps

After installation, you need to:

  1. Set Up Requirements - Verify system requirements
  2. Configure GPU (optional) - Set up CUDA for local inference
  3. Set Up API Keys (optional) - Configure remote providers
  4. Define Schema - Create your first Pydantic template

Common Issues

🐛 uv not found (source install only)

If you install from source, you need uv. Install it with:

# Linux/macOS
curl -LsSf https://astral.sh/uv/install.sh | sh

# Windows (PowerShell)
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"

# Or with pip
pip install uv

🐛 Python version mismatch (source install)

When using uv from source, specify Python version if needed:

uv python install 3.10
uv sync

🐛 Import errors after installation

Solution: If you installed from source with uv, run scripts and the CLI via uv run:

uv run python script.py
uv run docling-graph --help

If you installed with pip, use python and docling-graph directly.

🐛 GPU not detected

Solution: See GPU Setup Guide

Performance Notes

New in v1.2.0: Significant CLI performance improvements:

  • Init command: 75-85% faster with intelligent dependency caching
  • First run: ~1-1.5s (checks dependencies)
  • Subsequent runs: ~0.5-1s (uses cache)
  • Dependency validation: 90-95% faster (2-3s → 0.1-0.2s)
  • Lazy loading: Configuration constants loaded on-demand

Development Installation

For contributing to the project:

# Clone repository
git clone https://github.com/docling-project/docling-graph
cd docling-graph

# Install with development dependencies
uv sync --all-extras --dev

# Install pre-commit hooks
uv run pre-commit install

# Run tests
uv run pytest

Updating

If you installed from PyPI:

pip install -U docling-graph

If you installed from source:

git pull origin main
uv sync

Uninstalling

If you installed from PyPI:

pip uninstall docling-graph

If you installed from source:

rm -rf .venv
cd ..
rm -rf docling-graph